

Rare IBMFs

Mony Fahd CRMR Aplasie 04/10/2024

IBMFs

Group of rare diseases dominated by Fanconi's disease, BDA, SBDS, telomeroptahy

Progress in genetics: more and more entities reported

A landscape of germ line mutations in a cohort of inherited bone marrow failure patients

Olivier Bluteau, Blood, 2018

IBMFs: presentation in paediatrics

- Presentation
 - Haematological disease may initially present as isolated cytopenia
 - Increased risk of MDS/LA(M)
- With or without associated abnormalities
 - IUGR/PSR ± microcephaly
 - Malformations (thumbs & hands, kidneys, etc.) & organ damage: pancreas, cerebellum, lungs, liver, skin & appendages...
- Therapeutic treatment: HSCT

A landscape of germline mutations in a cohort of inherited BMF patients

Systematic studies in patients with constitutional aplastic anemia likely to be constitutional NB: FA was systematically excluded as were patients with identified classic IBMF like telomeropathies or other

N = 179 pts Median age at evaluation: 11 years DNA extracted from fibroblastes +++ Whole exome sequencing

Age at skin biopsy, no. (%), y	
≤2	37 (20.7)
>2 and <18	76 (42.5)
≥18	66 (36.9)

Group 1: germinal variant identified : <u>86 pts (48%)</u> Group 2: mutations VUS Group 3: no variant I opts with SAMD9L

6 pts with SAMD9 mutations

Bluteau & al, Blood 2018

Rare IBMFs

Helping hematologists conquer blood diseases worldwide

Olivier Bluteau, Blood, 2018

A landscape of germ line mutations in a cohort of inherited bone marrow failure patients

Rare IBMFs

- Often severe thrombocytopenia (<50,000 at birth)
- Normal platelet size
- BM: reduction or absence of megakaryocytes in the bone marrow
- Elevated TPO assay (X10/X50) (no clinical correlation with disease severity)
- No phenotypic abnormalities
- Mutation of the thrombopoietin receptor gene, c-Mpl (identified in 2/3 of cases, genetic heterogeneity)

Designations, delineations, and overlap between disease groups related to CAMT.

> M. Germeshausen and M. Ballmaier Best Practice & Research Clinical Haematology 34 (2021)

- Progression to bone marrow failure in the first 10 years of life
- Low risk of transformation compared with other IBMFS
 - One patient with ALL (Steinberg, J Pediatr Hematol Oncol, 2007)
 - 3 patients with cytogenetic abnormalities (trisomy 8 or monosomy 7)
- Without treatment, 50% died at 6 years (Alter, Hematology of Infancy and Childhood, 1993)

Outcomes of patients undergoing allogeneic haematopoietic stem cell transplantation for congenital amegakaryocytic thrombocytopenia; a study on behalf of the PDWP of the EBMT

Clémence Aldebert ^{1™}, Mony Fahd¹, Jacques-Emmanuel Galimard ^{10°}, Ibrahim A. Ghemlas³, Marco Zecca ^{10°}, Juliana Silva⁵, Alexander Mohseny ^{10°}, Alphan Kupesiz ^{10°}, Rose-Marie Hamladji⁸, Nuno Miranda ^{10°}, Tayfun Güngör ^{10°}, Robert F. Wynn ^{11°}, Pietro Merli ^{12°}, Mikael Sundin ^{13°}, Maura Faraci ^{14°}, Cristina Diaz-de-Heredia ^{15°}, Birgit Burkhardt ^{16°}, Victoria Bordon ^{17°}, Marie Angoso¹⁸, Peter Bader¹⁹, Marianne Ifversen ^{20°}, Concepcion Herrera Arroyo ^{21°}, Natalia Maximova ^{22°}, Susana Riesco²³, Jerry Stein²⁴, Arnaud Dalissier²⁵, Franco Locatelli ^{26°}, Krzysztof Kalwak ^{27°}, Jean-Hugues Dalle¹ and Selim Corbacioglu ²⁸

© The Author(s), under exclusive licence to Springer Nature Limited 2024

Congenital amegakaryocytic thrombocytopenia is a rare, inherited bone marrow failure syndrome. Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is currently the only curative treatment. In this retrospective study, we analysed 66 patients with allo-HSCT, reported in the European Society for Blood and Marrow Transplantation (EBMT) registry. Bone marrow (BM) was the most widely used stem cell source (n = 40; 61%) followed by peripheral blood (PB) (n = 18; 27%), and unrelated umbilical cord blood (UCB) (n = 8; 12%). Most frequently was a HLA-matched graft from related (n = 26; 39%) and unrelated (n = 15; 23%) donors after a myeloablative busulfan-based conditioning regimen. GvHD prophylaxis was mostly cyclosporine and methotrexate (53%). The 6-year cumulative incidence of graft-failure and second transplant were 25% and 17%, respectively. The 6-year disease-free survival (DFS) and overall survival (OS) were 66.9% and 85.6%, respectively. The 6-year transplant-related mortality (TRM) was 8.0%. In conclusion, most patients with CAMT benefit from allo-HSCT, but with many graft failures.

Bone Marrow Transplantation; https://doi.org/10.1038/s41409-024-02416-x

Retrospective multicentre study by the EBMT's Pediatric Disease Working Party (PDWP)

66 patients 25 centers

Received a first allogeneic HSC transplant for CAMT

Age<18 years

Between 1998 and 2020

BMT 2024

• Median age at diagnosis: 1.3 years

 Mutation identified in 18 patients absent in 7 patients No data for 40 patients

Median platelet count at diagnosis 16,000

- Median age at transplant: 3.2 years
- BM 59% PB (27%) CB(12%)
- MSD 34.8% MUD 22.7%,
- MAC 86%
- RIC 16%

N° at risk:

Transplantation and Cellular Therapy

journal homepage: www.tctjournal.org

Full Length Article Pediatric

Outcomes in Hematopoietic Stem Cell Transplantation for Congenital Amegakaryocytic Thrombocytopenia

Maria Cancio^{1,*}, Kyle Hebert², Soyoung Kim³, Mahmoud Aljurf⁴, Timothy Olson⁵, Eric Anderson⁶, Lauri Burroughs⁷, Anant Vatsayan⁸, Kasiani Myers⁹, Hasan Hashem¹⁰, Rabi Hanna¹¹, Biljana Horn¹², Tim Prestidge¹³, Jaap-Jan Boelens¹, Farid Boulad¹, Mary Eapen²

CIBMTR

86 patients

ABSTRACT

Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare, inherited bone marrow failure syndrome. Hematopoietic stem cell transplantation (HSCT) is considered a curative treatment option, but existing descriptions of patient and transplant characteristics and outcomes after related and unrelated donor HSCT are sparse. We describe outcomes after HSCT for congenital amegakaryocytic thrombocytopenia (CAMT; n = 86) from 2000 to 2018. We conducted an analysis of data collected by the Center for International Blood and Marrow Transplant Research on patients with CAMT receiving therapeutic allogeneic HSCT. The predominant donor type was HLAmatched or mismatched unrelated donors (n = 58, 67%). The remaining included HLA-matched sibling (n = 23, 27%) and HLA-mismatched relative (n = 5, 6%). The predominant graft types were bone marrow (n = 53, 62%) and cord blood (n = 25, 29%). The median age at transplantation was 3 years, with 82 of 86 patients being transplanted aged <10 years. The 5-year graft failure-free and overall survival were 83% (95% confidence interval [CI], 74-90) and 86% (95% CI, 78-93), respectively. An examination for risk factors confirmed mortality was higher after HLAmismatched relative and mismatched unrelated donor HSCT compared to HLA-matched sibling and matched unrelated donor HSCT (hazard ratio 3.52, P = .04; 75% versus 93%). The 1-year incidence of graft failure was 19% after HLA-mismatched HSCT (n = 32) compared to 7% after HLA-matched HSCT (n = 54, P = .15). Day-100 grade II-IV acute graft-versus-host disease was 13%, 26%, and 30% after HLA-matched sibling, HLA-matched and mismatched unrelated donor HSCT. The 5-year incidence of chronic graft-versus-host disease was 33% with 24 of 28 patients having received grafts from HLA-matched (n = 13) and mismatched unrelated (n = 11) donors. Although HLA-matched donors are preferred, HLA-mismatched donors also extend survival for CAMT.

© 2021 The American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights reserved.

CAMT: TAKE HOME MESSAGE

- Diagnostic difficulties
- BM>CB
- High risk of Graft failure
- HSCT MAC
- Haploidentical transplants?

MECOM

- Heterozygous mutations in MECOM
- Affected different functional domains of the EVI1 protein
- Familial and sporadic cases

- Clinical presentation
 - Radioulnar synostosis
 - Bone marrow failure

RUSART

• +/-clinodactyly, cardiac and renal malformations, B-cell deficiency, and presenile hearing loss.

MECOM Phenotype and Treatment

MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia

Manuela Germeshausen,¹ Phil Ancliff,² Jaime Estrada,³ Markus Metzler,⁴ Eva Ponstingl,⁵ Horst Rütschle,⁵ Dirk Schwabe,⁶ Richard H. Scott,⁷ Sule Unal,⁸ Angela Wawer,⁹ Bernward Zeller,¹⁰ and Matthias Ballmaier¹

¹Central Research Facility Cell Sorting, Hannover Medical School, Hannover, Germany; ²Haematology and Oncology Department, Great Ormond Street Hospital for Children, London, United Kingdom; ³Pediatric Specialists of Texas, Methodist Healthcare System, San Antonio, TX; ⁴Pediatric Oncology and Hematology, University Hospital Erlangen, Erlangen, Germany; ⁵Pediatric Practice Horst Rütschle, Mutterstadt, Germany; ⁶Pediatric Oncology, Hematology and Hemostaseology, University Hospital Frankfurt, Frankfurt, Germany; ⁷Clinical Genetics Department, Great Ormond Street Hospital for Children, London, United Kingdom; ⁸Center for Fanconi Anemia and Inherited Bone Marrow Failure Syndromes, Hacettepe University, Ankara, Turkey; ⁹Division of Pediatric Hematology/Oncology, Department of Pediatrics, Technische Universität München, Munich, Germany; and ¹⁰Department of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway

Blood Advances, 2018 (Germeshausen and

1st series of 12 pts

al)

- 10/12 pts allografted with MUD
- Familial and sporadic patients
- With germline mutation in the MECOM,
- Clinical spectrum ranged from isolated RUS with or without mild hematological abnormalities to severe IBMFS without evident skeletal abnormalities

N = 6 pts >	UB004	UB036	UB093	UB100		UB104	UB153
Nucleic acid change	c.C2248T	c.G2334T	c.G1930T	c.1302_1306del		c.2900_2903del	c.2208-1G>A
Amino acid change	p.R750W	p.R778S	p.E644X	p.K434fs		p.D967fs	
Sex	м	F	м	F		F	F
Age	18 mo	6 mo	3 mo	Neonatal		9 mo	9 mo
Family history	Simplex	Simplex	Simplex	Simplex		Simplex	Simplex
Hb, g/dL	5.7	6.0	6.0	9	9.2	5.5	8.0
Platelets, \times 10°/L	1	10	10	62		36	10
ANC, × 10°/L	0.35	0.06	0	0		0.4	0
BM	Hypocellular	Hypocellular	Hypocellular	Hypocellular		Hypocellular	Hypocellular
BM karyotype	46,XY	46,XX	46,XY	46,XX		Trisomy 8	46,XX
Skeletal abnormality	Radioulnar synostosis	Thumb abnormalities	Clubfoot	No		No	Thumb abnormalities
Cardiac abnormality	Tetralogy of Fallot	Myocardial atrophy	Pulmonary stenosis	No		No	No
Other			Facial dysmorphia	—		—	Renal hypoplasia
Age at HSCT	3 у	6 mo	15 mo	9 mo		18 mo	3 у
Outcome	Died 3 mo after HSCT from a cardiac complication during severe infection	Died at 14 y from a cardiac complication during influenza	No major complication 9 y after HSCT (10-y old)	No major compli 1 y afte (2-y old	r cation er HSCT d)	No major complication 8 mo after HSCT (2-y old)	No major complication 3 y after a second HSCT
		Intection			Bluteau &	& al, Blood 2018	(6-y old)

MECOM HSCT with RIC?

Reduced-intensity conditioning is effective for allogeneic hematopoietic stem cell transplantation in infants with *MECOM*-associated syndrome

Masahiro Irie¹ · Tetsuya Niihori² · Tomohiro Nakano¹ · Tasuku Suzuki¹ · Saori Katayama¹ · Kunihiko Mori Hidetaka Niizuma¹ · Nobu Suzuki³ · Yuka Saito-Nanjo³ · Masaei Onuma³ · Takeshi Rikiishi³ · Atsushi Satc Mayumi Hangai⁴ · Mitsuteru Hiwatari^{4,5} · Junji Ikeda⁶ · Reo Tanoshima⁶ · Norio Shiba⁶ · Yuki Yuza⁷ · Nobuyuki Yamamoto⁸ · Yoshiko Hashii^{9,10} · Motohiro Kato^{4,11} · Junko Takita¹² · Miho Maeda¹³ · Yoko Aok Masue Imaizumi³ · Yoji Sasahara¹

6 pts MECOM+ Age at HSCT 5-18 months RIC regimen comprised:

-FLU -alkylating -low-dose rATG 3 pts aGVHD>II No cGVH

No low-dose irradiation (if the patient is not at high risk of rejection) to prevent the risks of short stature and secondary malignancy.

International Journal of Hematology (2023)

MECOM : take home messages

- Variable hematological phenotype: from isolated thrombocytopenia to severe hematological failure
- Variable extra-hematological phenotype: radio-ulnar synostosis to multiple squeltic malformations or other organs.

• Severe forms

• CDT and donor?

Rare IBMFs

DNA JC 21

Shwachman-Diamond syndrome-like disorder with telomeropathy aspects

- Average age of onset for BMF is two years (0 to 15 years, n=19)
- Phenotype:
- -Skin hypopigmentation
- -Dental and retinal abnormalities
- -Growth delay and/or short stature
- -Developmental delay and/or neurological abnormalitie
- -Exocrine pancreatic dysfunction
- AML developed in two patients
- CDT and donor?

Rare IBMFs

DNA ligase 4

- Role in the repair of DNA double- strand breaks
- Autosomal recessive disorder
- 86 cases have been reported with heterogenous phenotypes (Staines et al)
 - Microcephaly
 - Delayed growth and development,
 - Skin abnormalities including photosensitivity and psoriaform lesions
 - Pancytopenia.
 - Immune deficiency.
 - Malignant disease

DNA ligase 4: Description

Failing to Make Ends Meet: The Broad Clinical Spectrum of DNA Ligase IV Deficiency. Case Series and Review of the Literature

Aidé Tamara Staines Boone¹, Ivan K Chinn²³, Carmen Alaez-Versón⁴, Marco A Yamazaki-Nakashimada⁵, Karol Carrillo-Sánchez⁴, María de la Luz Hortensia García-Cruz⁶, M Cecilia Poli²⁷, M Edith González Serrano⁸, Edgar A Medina Torres⁸, David Muzquiz Zermeño¹, Lisa R Forbes²⁹, Francisco J Espinosa-Rosales^{8 10}, Sara E Espinosa-Padilla⁸, Jordan S Orange²⁹, Saul Oswaldo Lugo Reyes⁸

Front Pediatr. 2018

10/41 malignant disease or solids cancers

DNA ligase 4: HSCT

Allogeneic hematopoietic stem cell transplantation corrects ligase IV deficiency

Jing He¹, Xin Tian¹, Tong Luo, Runying Zou, Zexi Yin, Keke Chen, Chengguang Zhu, Xiangling He^{*}

Department of Hematology and Oncology, Children's Medical Center, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China

Transplant Immunology (2023)

15 reported cases of LIG4 syndrome that underwent HSCT

- seven cases survived
- causes of death
 - 3 patients : fungal infections
 - 1 patient: Epstein-Barr virus-related lymphoproliferative syndrome
 - 1 patient: viral infection
 - 1 patient: MAT

DNA ligase 4: Take home messages

- Heterogenous phenoytpe
- Radiosensitivity
- Hematologic complications: malignant disease
- Infectious complications
- Treatment: RIC HSCT

Rare IBMFs

ERCC6L2

• ERCC6L2 encodes a DNA repair protein

• Phenotype:

- Mild and fluctuating cytopenias with bone marrow hypoplasia.
- Patients develop clonal hematopoiesis with somatic mutations in TP53,
- +/- developmental delay and microcephaly
- Median age 18 years (range 6-65 years old)

N = 7	UB657	UB008	UB075	UB196	UB083	UB134	UB168
Nucleic acid change	c.2187delG c.3708-2A>T	c.2187delG c.3708-2A>T	c.C1504T c.C3796T	c.C1504T c.C3796T	c.C1963T c.C1963T	c.G847A c.G847A	c.C1963T c.C1963T
Amino acid change	p.E729fs —	p.E729fs —	p.Q502X p.R1266X	p.Q502X p.R1266X	p.R655X p.R655X	p.D283N p.D283N	p.R655X p.R655X
Other causal mutation	—	—	—	—	—	TERC	—
Sex	м	F	F	F	М	F	м
Age, y	7	13	22	18	2	22	13
Family history	Brother of UB008	Sister of UB657	Sister of UB196	Sister of UB075	N/A	Simplex	Consanguinity, brother with intellectual disability
Hb, g/dL	11.4	<12	11.9	12.9	10.9	10.7	9.0
$Platelets, \times 10^{\circ}/L$	64	<150	107	101	48	38	4
ANC, × 10 ⁹ /L	<1.5	<1.5	0.4	1.6	1.0	0.1	0.7
BM	Hypocellular	Hypocellular	Dysplasia	N/A	Hypocellular	Hypocellular dysplasia	Hypocellular
BM karyotype	46,XX	46,XX	Monosomy 7	N/A	46,XY	46,XX	46,XY
Microcephaly	No	No	No	No	No	No	Yes
Neurological defect	No	No	No	No	No	No	Learning difficulties, intellectual disability, vascular abnormalities in the right frontal lobe (MRI)
Other	_	—	_	—	Facial dysmorphia	—	Bilateral pyeloureteral junction abnormalities
Age at HSCT, y	14	13	22	—	—	—	—
Outcome	No significant complication after HSCT (15-y old)	No significant complication after HSCT (27-y old)	Died at 24 y, of EBV lymphoma post-HSCT	Thrombo- cytopenia and neutropenia (26-y old)	Mild thrombo- cytopenia (15-y old)	Died at 43 y, after AML with -7, hypomethylating agent failure	Stable, macrocytosis without anemia, no neurological signs (21-y old)

Only 1 pt/7 with microcephalia

HSCT: only 3/7 (AYA pts)

1/7 AML (age 43)

Bluteau & al, Blood 2018

ERCC6L2: take-home messages

- BMF with microcephaly + developmental delay ± ataxia
- Neurological phenotype may be absent
- Leukemia predisposing syndrome
- Treatment HSCT before clonal evolution

Conclusion Rare IBMFs

- Difficulty diagnostic
- Difficulty therapeutic
- Only curatif treatment: HCST
- Modality? Cdt? Donor selection?
 - Indications and modality of treatment should be discussed at an expert meeting. (RCP national)
- Gene therapy?

MERCI

